Deep Learning

Most modern deep learning models are based on an artificial neural network, although they can also include propositional formulas or latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep Boltzmann machines.

In deep learning, each level learns to transform its input data into a slightly more abstract and composite representation. In an image recognition application, the raw input may be a matrix of pixels; the first representational layer may abstract the pixels and encode edges; the second layer may compose and encode arrangements of edges; the third layer may encode a nose and eyes; and the fourth layer may recognize that the image contains a face. Importantly, a deep learning process can learn which features to optimally place in which level on its own. (Of course, this does not completely obviate the need for hand-tuning; for example, varying numbers of layers and layer sizes can provide different degrees of abstraction.)

The “deep” in “deep learning” refers to the number of layers through which the data is transformed. More precisely, deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is the chain of transformations from input to output. CAPs describe potentially causal connections between input and output. For a feedforward neural network, the depth of the CAPs is that of the network and is the number of hidden layers plus one (as the output layer is also parameterized). For recurrent neural networks, in which a signal may propagate through a layer more than once, the CAP depth is potentially unlimited. No universally agreed upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep learning involves CAP depth > 2. CAP of depth 2 has been shown to be a universal approximator in the sense that it can emulate any function.[citation needed] Beyond that more layers do not add to the function approximator ability of the network. Deep models (CAP > 2) are able to extract better features than shallow models and hence, extra layers help in learning features.

Hits: 264